
Section B6:  Mathematical Programming 
 
B6.1.  Introduction 
Mathematical programming seeks to optimize (maximize or minimize) an objective function 
subject to constraints. There are many types of mathematical programming, including the 
following: 
 

• Linear programming (LP): optimizes a linear function subject to linear contraints. 
• Quadratic programming (QP): optimizes a quadratic function subject to linear contraints. 
• Mixed integer programming (MIP): optimizes a linear function subject to linear 

contraints, but with some or all variables restricted to integer values 
 
There are many other types of mathematical programming, not discussed here, including 
nonlinear programming, combinatorial optimization, and dynamic programming.  
 
Figure 1 show an example “toy” linear program, along with basic terminology used to describe a 
mathematical program (from Paris Q (2016) An Economic Interpretation of Linear 
Programming).  

 

Figure 1. Example linear program 
This toy example has only two decision variables (𝑥𝑥1 and 𝑥𝑥2) and two constraints. LPs and QPs used in 
NEMS and WEPS can have many thousands of decision variables and constraints. 
 
B6.2.  Solution Approach 
Mathematical programs are usually solved iteratively, starting with a set of non-optimal decision 
variable values. Each iteration involves adjusting the values of the decision variables and 
evaluating the objective function value. The iterative procedure, shown in Figure 2, stops when it 
is no longer possible to improve (increase or decrease) the value of the objective function. 



 

Figure 2. Iterative solution approach 
 
Solution approaches for LPs can be broadly classified as extreme point methods and interior 
point methods. The two approaches can be described graphically for a small LP that comprises 
only two decision variables. 
 
Figure 3 is a graphical representation of the the LP described in Figure 1. Each decision variable 
is represented by an axis; the constraints and bounds define a feasible region with a blue interior. 
The objective function is shown with an arrow representing the direction of improvement. Each 
vertex formed by an intersection of contraints (or bounds) is called an an extreme point and is 
shown by a red dot in the figure. 

 

Figure 3. Graphical representation of example LP 

An extreme point method, such as the simplex method (see the references below), uses an 
extreme point as the starting point. Each step of the solution algorithm requires deciding which 



adjacent extreme point to visit next, then moving to that point. The algorithm ends when there is 
no further improvement possible. 
 
An interior point method, such as the barrier method, starts from any feasible point, and proceeds 
through the interior of the feasible region until no further improvement is possible. 
 
B6.3.  Interpreting an Optimal Solution 
An optimal solution is characterized by 
 

• Objective function value 
• Decision variable values 
• Shadow prices (for constraints) 
• Slacks (for constraints) 
• Reduced costs (for decision variables) 

 
The objective function value and decision variable values are the values of the objective function 
and the decision variables, respectively, when the objective function is optimized subject to the 
constraints. 
 
The shadow price, or dual price, of a constraint is the partial derivative of the the objective 
function with respect to the right-hand side of the constraint, evaluated at the point specified by 
the optimal solution. In other words, a constraint’s shadow price tells how much the value of the 
objective function would change if the the scalar portion of the constraint were changed by a 
small amount. 
 
For some carefully constructed LPs and QPs, the shadow price can be interpreted as the price of 
a resource or product. For example, the shadow price of a certain constraint might represent the 
wholesale price of motor gasoline in the U.S. Gulf Coast region. In general, the shadow price 
indicates the extent to which the constraint affects the optimal value of the objective function; 
every constraint potentially limits the optimal value, raising the minimum or lowering the 
maximum. 
 
The slack of a constraint is the amount by which the constraint is non-binding. For example, if 
𝑥𝑥 + 𝑦𝑦 is restricted to be less than or equal to 10, and 𝑥𝑥 + 𝑦𝑦 is actually 8 in the optimal solution, 
then this constraint has a slack value of 10 − 8 = 2. A constraint with a non-zero slack value has 
a shadow price of zero. 
 
The reduced cost of a decision variable tells how much the variable’s objective function 
coefficient would have to change before the variable would take a non-zero value in the optimal 
solution. Variables with a zero reduced cost have non-zero values in the optimal solution. 
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